Entrer un problème...
Algèbre linéaire Exemples
[1-1367-3946]⎡⎢⎣1−1367−3946⎤⎥⎦
Étape 1
Étape 1.1
Perform the row operation R2=R2-6R1R2=R2−6R1 to make the entry at 2,12,1 a 00.
Étape 1.1.1
Perform the row operation R2=R2-6R1R2=R2−6R1 to make the entry at 2,12,1 a 00.
[1-136-6⋅17-6⋅-1-3-6⋅3946]⎡⎢⎣1−136−6⋅17−6⋅−1−3−6⋅3946⎤⎥⎦
Étape 1.1.2
Simplifiez R2R2.
[1-13013-21946]⎡⎢⎣1−13013−21946⎤⎥⎦
[1-13013-21946]⎡⎢⎣1−13013−21946⎤⎥⎦
Étape 1.2
Perform the row operation R3=R3-9R1R3=R3−9R1 to make the entry at 3,13,1 a 00.
Étape 1.2.1
Perform the row operation R3=R3-9R1R3=R3−9R1 to make the entry at 3,13,1 a 00.
[1-13013-219-9⋅14-9⋅-16-9⋅3]⎡⎢⎣1−13013−219−9⋅14−9⋅−16−9⋅3⎤⎥⎦
Étape 1.2.2
Simplifiez R3R3.
[1-13013-21013-21]⎡⎢⎣1−13013−21013−21⎤⎥⎦
[1-13013-21013-21]⎡⎢⎣1−13013−21013−21⎤⎥⎦
Étape 1.3
Multiply each element of R2R2 by 113113 to make the entry at 2,22,2 a 11.
Étape 1.3.1
Multiply each element of R2R2 by 113113 to make the entry at 2,22,2 a 11.
[1-130131313-2113013-21]⎡⎢
⎢⎣1−130131313−2113013−21⎤⎥
⎥⎦
Étape 1.3.2
Simplifiez R2R2.
[1-1301-2113013-21]⎡⎢
⎢⎣1−1301−2113013−21⎤⎥
⎥⎦
[1-1301-2113013-21]
Étape 1.4
Perform the row operation R3=R3-13R2 to make the entry at 3,2 a 0.
Étape 1.4.1
Perform the row operation R3=R3-13R2 to make the entry at 3,2 a 0.
[1-1301-21130-13⋅013-13⋅1-21-13(-2113)]
Étape 1.4.2
Simplifiez R3.
[1-1301-2113000]
[1-1301-2113000]
Étape 1.5
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
Étape 1.5.1
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
[1+0-1+1⋅13-211301-2113000]
Étape 1.5.2
Simplifiez R1.
[10181301-2113000]
[10181301-2113000]
[10181301-2113000]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2